Abstract

Single-fiber phrenic nerve action potentials were recorded together with activity of contralateral whole phrenic nerve rootlets during eupnea and gasping in decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated cats. Gasping was reversibly produced by cooling a fork thermode positioned through the pontomedullary junction. In eupnea, phrenic motoneurons were distributed into "early" and "late" populations relative to their onset of activity during inspiration. During gasping, however, both fiber types typically commenced activity at the beginning of the phrenic nerve burst. Moreover, late fibers, but not early units, exhibited an augmentation of discharge frequency with the onset of gasping. The concentration of activity of all phrenic motoneurons at the beginning of inspiration and the increase in late-unit discharge frequency account for the faster rise of the gasp as compared with the eupneic breath. It is concluded that the pattern of phrenic nerve activation during gasping differs fundamentally from that during eupnea. These results support the concept that mechanisms underlying the neurogenesis of gasping and eupnea may not be identical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call