Abstract

When facing today’s scarcity of mineral phosphorus (P) resources and the environmental issues following enhanced P losses especially from agriculture, new solutions need to be implemented. In this framework, the potential for a mechanical separation of a P rich grain fraction from wheat, rye, barley and oats is investigated in order to provide animal feed with reduced organic P content. Thus, P accumulation in manure and soils should be prevented. Also, the subsequent utilization of the separated organic P, which occurs in the form of inositol P, for a sustainable P management via activation of intrinsic enzymes is evaluated. It was shown that in grain layers at 7.0, 5.5, 6.4 and 2.5% cross section of wheat, rye, barley and oats, respectively, maximum inositol P occurs with 1.6, 0.8, 1.4 and 1.2 g/100 g. Phytase activity is also highest in the outer layers of the grains with maxima of 9300, 12,000, 8400 and 2400 U/kg, respectively. A removal of the specific layers where inositol P is accumulated could possibly achieve a 24, 31, 60 and 27% organic P reduction for wheat, rye, barley and oats with 7, 14, 25 or 7% grain elimination. A debranning, eliminating all the outer grain layers to a certain extent, in contrast, leads to significantly higher mass losses. Within the P enriched layer determined from inositol P distribution, phytase activity is calculated to be around 285, 831, 777 and 42 U/kg for wheat, rye, barley and oats, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.