Abstract

Much effort recently has been expended to study the strip casting process used to produce thin metal strip with a near final thickness. This process eliminates the need for hot rolling, consumes less energy, and offers a feasible method of producing various hard-to-shape alloys. The finer microstructure that results from the high cooling rate used during the casting process enhances mechanical properties. In this study, strips of phosphor bronzes (Cu-Sn-P) metal were produced using a twin roll strip casting process as well as a conventional horizontal continuous casting (HCC) process. The microstructures, macrosegregations, textures, and mechanical properties of the as-cast and as-rolled metal sheet produced by these two methods were examined carefully for comparative purposes. The results indicate that cast strip produced by a twin roll caster exhibit significantly less inverse segregation of tin compared to that produced by the HCC process. The mechanical properties including tensile strength, elongation, and microhardness of the products produced by the twin roll strip casting process are comparable to those of the HCC processed sheet. These properties meet specifications JIS H3110 and ASTM B 103M for commercial phosphor bronze sheet. The texture of the as-rolled sheet from these two processes, as measured from XRD pole figures, were found to be virtually the same, even though a significant difference exists between them in the as-cast condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call