Abstract
Wireless sensor networks are an important military technology with civil and scientific applications. In this article, we derive a discrete event controller system for distributed surveillance networks that consists of three interacting hierarchies—sensing, communications, and command. Petri Net representations of the hierarchies provide plant models of resource contention and internal consistency. Control specifications are derived that enforce consistency across the hierarchies. Three controllers are created using different methodologies to satisfy these specifications. The methods used are Petri Net, finite state automata using the Ramadge and Wonham approach, and vector addition control using the Wonham and Li approach. We use the controllers derived to contrast the design methodologies. Our results find these three approaches to be roughly equivalent. Each method has advantages and disadvantages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Distributed Sensor Networks
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.