Abstract

BackgroundQuantitative measures of 11C-raclopride receptor binding can be used as a correlate of postsynaptic D2 receptor density in the striatum, allowing 11C-raclopride positron emission tomography (PET) to be used for the differentiation of Parkinson’s disease from atypical parkinsonian syndromes. Comparison with reference values is recommended to establish a reliable diagnosis. A PET template specific to raclopride may facilitate direct computation of parametric maps without the need for an additional MR scan, aiding automated image analysis.MethodsSixteen healthy volunteers underwent a dynamic 11C-raclopride PET and a high-resolution T1-weighted MR scan of the brain. PET data from eight healthy subjects was processed to generate a raclopride-specific PET template normalized to standard space. Subsequently, the data processing based on the PET template was validated against the standard magnetic resonance imaging (MRI)-based method in 8 healthy subjects and 20 patients with suspected parkinsonian syndrome. Semi-quantitative image analysis was performed in Montreal Neurological Institute (MNI) and in original image space (OIS) using VOIs derived from a probabilistic brain atlas previously validated by Hammers et al. (Hum Brain Mapp, 15:165–174, 2002).ResultsThe striatal-to-cerebellar ratio (SCR) of 11C-raclopride uptake obtained using the PET template was in good agreement with the MRI-based image processing method, yielding a Lin’s concordance coefficient of 0.87. Bland-Altman analysis showed that all measurements were within the ±1.96 standard deviation range. In all 20 patients, the PET template-based processing was successful and manual volume of interest optimization had no further impact on the diagnosis of PD in this patient group. A maximal difference of <5% was found between the measured SCR in MNI space and OIS.ConclusionsThe PET template-based method for automated quantification of postsynaptic D2 receptor density is simple to implement and facilitates rapid, robust and reliable image analysis. There was no significant difference between the SCR values obtained with either PET- or MRI-based image processing. The method presented alleviates the clinical workflow and facilitates automated image analysis.

Highlights

  • Quantitative measures of 11C-raclopride receptor binding can be used as a correlate of postsynaptic D2 receptor density in the striatum, allowing 11C-raclopride positron emission tomography (PET) to be used for the differentiation of Parkinson’s disease from atypical parkinsonian syndromes

  • An even more sophisticated technique was applied by Rusjan et al [10], using the Montreal Neurological Institute/International Consortium of Brain Mapping standard brain template (MNI/ICBM), segmentation using a fitting function of grey matter probability and multiple iterations of morphological dilatation to prevent overlap between neighbouring regions of interest (ROIs) [10]

  • No patients with multiple system atrophy (MSA), progressive supranuclear palsy (PSP) or corticobasal degeneration (CBD) were in the study population

Read more

Summary

Introduction

Quantitative measures of 11C-raclopride receptor binding can be used as a correlate of postsynaptic D2 receptor density in the striatum, allowing 11C-raclopride positron emission tomography (PET) to be used for the differentiation of Parkinson’s disease from atypical parkinsonian syndromes. The data processing based on the PET template was validated against the standard magnetic resonance imaging (MRI)-based method in 8 healthy subjects and 20 patients with suspected parkinsonian syndrome. As a correlate of postsynaptic D2 receptor density in the putamen and caudate nucleus (striatum), quantitative measures of 11C-raclopride binding, combined with comparison to reference values, are recommended for reliable diagnosis [3]. Manual delineation of regions of interest (ROIs) or volumes of interest (VOIs) are user-dependent and time-consuming These techniques introduce intra- and interoperator variation, which limits the reproducibility of the results. An even more sophisticated technique was applied by Rusjan et al [10], using the Montreal Neurological Institute/International Consortium of Brain Mapping standard brain template (MNI/ICBM), segmentation using a fitting function of grey matter probability and multiple iterations of morphological dilatation to prevent overlap between neighbouring ROIs [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.