Abstract

BackgroundThe aim of our study was to compare 90Y dosimetry obtained from PET/MRI versus PET/CT post-therapy imaging among patients with primary or metastatic hepatic tumors.First, a water-filled Jaszczak phantom containing fillable sphere with 90Y-chloride was acquired on both the PET/CT and PET/MRI systems, in order to check the cross-calibration of the modalities. Following selective internal radiation therapy (SIRT) with 90Y microspheres, 32 patients were imaged on a PET/CT system, immediately followed by a PET/MRI study. Reconstructed images were transferred to a common platform and used to calculate 90Y dosimetry. A Passing-Bablok regression scatter diagram and the Bland and Altman method were used to analyze the difference between the dosimetry values.ResultsThe phantom study showed that both modalities were calibrated with less than 1% error. The mean liver doses for the 32 subjects calculated from PET/CT and PET/MRI were 51.6 ± 24.7 Gy and 46.5 ± 22.7 Gy, respectively, with a mean difference of 5.1 ± 5.0 Gy. The repeatability coefficient was 9.0 (18.5% of the mean). The Spearman rank correlation coefficient was very high, ρ = 0.97. Although the maximum dose to the liver can be significantly different (up to 40%), mean liver doses from each modalities were relatively close, with a difference of 18.5% or less.ConclusionsThe two main contributors to the difference in 90Y dosimetry calculations using PET/CT versus PET/MRI can be attributed to the differences in regions of interest (ROIs) and differences attributed to attenuation correction. Due to the superior soft-tissue contrast of MRI, liver contours are usually better seen than in CT images. However, PET/CT provides better quantification of PET images, due to better attenuation correction. In spite of these differences, our results demonstrate that the dosimetry values obtained from PET/MRI and PET/CT in post-therapy 90Y studies were similar.

Highlights

  • The aim of our study was to compare 90Y dosimetry obtained from PET/MRI versus PET/CT post-therapy imaging among patients with primary or metastatic hepatic tumors

  • Post-therapy quantitative 90Y imaging can be used to estimate the absorbed radiation dose delivered to liver tumors and normal liver tissue. These data can help us to determine whether patients’ adverse events, treatment successes, or treatment failures can be attributed to the dose that the tumor or normal liver received; they are expected to be an important predictor of treatment efficacy [7]

  • In a prospective study, after selective internal radiation therapy (SIRT) with 90Y microspheres, 32 patients were imaged on a four-ring, time-of-flight (TOF), PET/CT system Biograph mCT (Siemens Medical Systems, Erlangen, Germany)

Read more

Summary

Introduction

The aim of our study was to compare 90Y dosimetry obtained from PET/MRI versus PET/CT post-therapy imaging among patients with primary or metastatic hepatic tumors. Following selective internal radiation therapy (SIRT) with 90Y microspheres, 32 patients were imaged on a PET/CT system, immediately followed by a PET/MRI study. Post-therapy quantitative 90Y imaging can be used to estimate the absorbed radiation dose delivered to liver tumors and normal liver tissue. These data can help us to determine whether patients’ adverse events, treatment successes, or treatment failures can be attributed to the dose that the tumor or normal liver received; they are expected to be an important predictor of treatment efficacy [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.