Abstract

The purpose of this study was to compare permeability measurements in high-grade and low-grade glial neoplasms using a T2(*)-weighted method. Our hypothesis was that permeability measurements using a T2(*)-weighted technique would show permeability in high-grade neoplasms to be higher than that in low-grade neoplasms. Twelve patients with biopsy-proven high-grade neoplasms and 10 patients with biopsy-proven low-grade neoplasms underwent dynamic susceptibility contrast MR perfusion imaging (TR/TE, 1500/80) after bolus infusion of 0.2 mmol/kg of MR contrast material. Color-coded permeability-weighted maps were created using a model that weights relative contributions to signal intensity from intravascular T2(*) effects and extravascular T1 effects from blood-brain barrier permeability. Two measures of permeability were performed: mean value of highest permeability found on three images through the tumor (mean regional value) and highest value found at any region of interest in the tumor (single area of maximum permeability). Depending on the normality of the data sets, we used the Wilcoxon's rank sum test or the two-tailed Student's t test for statistical analysis. For low-grade tumors, the range was 0.006-0.041, and the median of the mean regional value for each image was 0.017. For high-grade tumors, the range was 0.005-0.092, and the median of the mean regional value was 0.035 (p = 0.025). For low-grade tumors, the range was 0.008-0.045, and the mean of the single area of maximum values was 0.02. For high-grade tumors, the range was 0.007-0.136, and the mean of the single area of maximum values was 0.054 (p = 0.018). Permeability values for high-grade tumors obtained using a T2(*)-weighted method were significantly greater than those for low-grade tumors and are consistent with previous studies reporting results using T1-weighted methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.