Abstract

Despite a significant decrease in the metallic waste emissions from an industrial site and a remediation process initiated in 2007, the Riou-Mort watershed (southwest France) still exhibits high Cd and Zn concentrations. Metal wastes have long been proven to significantly disturb aquatic communities. In this study, bioaccumulation capacities and responses to the chemical improvement of the hydrosystem were assessed for a year along the contamination gradient through the comparison of two biological models: Corbicula fluminea and periphytic biofilms, both considered as good bioindicators. Bioaccumulation results confirmed the persistence of water contamination in Corbicula fluminea and biofilms with, respectively, maximum Cd concentrations reaching 80.6 and 861.2 μg gDW(-1), and Zn concentrations 2.0 and 21.3 mg gDW(-1). Biofilms exhibited bioaccumulation in close correlation with water contamination, while Corbicula fluminea presented Cd bioaccumulation clearly regulated by water temperature and metal concentrations, affecting the ventilatory activity, as revealed by condition indices measurements. Also, a linear regression using Cd bioaccumulation and temperature () showed that below approximately 6 °C Corbicula fluminea did not appear to accumulate metals. Bioconcentration factors (BCFs) were higher in biofilms in comparison with Corbicula fluminea and showed the great accumulation capacity of suspended particulate matter in biofilms. However, bioaccumulation capacities are known to be influenced by many factors other than metal concentrations, such as temperature, water oxygenation or plankton and nutrient concentrations. Thus, this study demonstrates the power of a combined assessment using both Corbicula fluminea and biofilms as bioindicators to give a more integrated view of water quality assessment. Finally, when comparing our results with previous studies, the start of hydrosystem restoration could be shown by decreasing bioaccumulation in organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.