Abstract

PurposeTo determine peripapillary vessel density in eyes with perimetric glaucoma (PG) or preperimetric glaucoma (PPG) compared to normal controls using optical coherence tomography-angiography (OCT-A).MethodsWe recruited 13 patients with unilateral perimetric normal-tension glaucoma (NTG) and fellow preperimetric NTG showing only inferotemporal retinal nerve fiber layer (RNFL) defect in red-free RNFL photography in both eyes. We also enrolled 9 healthy controls. Using OCT-A, radial peripapillary capillary densities at inferotemporal and superotemporal regions were evaluated. Paired comparison of peripapillary vessel density was performed for PG eye, PPG eye, and normal eye.ResultsA total of 26 eyes of the 13 patients with unilateral PG and fellow PPG eyes and 18 eyes of 9 normal controls were analyzed. Vessel densities at the whole peripapillary region and inferotemporal region in PG eyes were significantly lower than those in PPG eyes (P = 0.001, P<0.001, respectively). Comparison between PPG and normal eyes showed no significant difference in the whole peripapillary region or the inferotemporal region (P = 0.654, P = 0.174, respectively). There was no significant (P = 0.288) difference in vessel density at superotemporal region among the three types of eyes (PG eye, PPG eye, and normal eye).ConclusionPPG eyes and normal eyes were found to have the similar densities of peripapillary microvasculature at the area with nerve fiber layer defect, whereas in PG eye, there was a significant decrease in vessel density at the area of RNFL thinning. This provides evidence that microvascular compromise in the retina might be a secondary change to nerve fiber layer degeneration in the pathogenesis of NTG.

Highlights

  • preperimetric glaucoma (PPG) eyes and normal eyes were found to have the similar densities of peripapillary microvasculature at the area with nerve fiber layer defect, whereas in perimetric glaucoma (PG) eye, there was a significant decrease in vessel density at the area of retinal nerve fiber layer (RNFL) thinning

  • This provides evidence that microvascular compromise in the retina might be a secondary change to nerve fiber layer degeneration in the pathogenesis of Normal tension glaucoma (NTG)

  • Normal tension glaucoma (NTG) is a multi-factorial optic neuropathy characterized by damage to the retinal nerve fiber layer (RNFL) and the optic nerve head associated with corresponding visual field (VF) defect, office-hour intraocular pressure (IOP) does not exceed normal range in NTG

Read more

Summary

Introduction

Normal tension glaucoma (NTG) is a multi-factorial optic neuropathy characterized by damage to the retinal nerve fiber layer (RNFL) and the optic nerve head associated with corresponding visual field (VF) defect, office-hour intraocular pressure (IOP) does not exceed normal range in NTG. The association between OBF and glaucoma has been investigated using several imaging methods, including fluorescein angiography[5,6,7,8,9], Heidelberg retina flowmeter[10], color Doppler imaging[11], laser speckle flowgraphy[12,13], and laser Doppler velocimetry[14]. Optical coherence tomography angiography (OCT-A) is a new imaging device that can characterize vasculature in various retinal layers, providing quantitative assessment of the microcirculation in the optic nerve head (ONH) and peripapillary region[15,16,17,18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.