Abstract

Parallel multi-level algorithms combining a time discretization and an overlapping domain decomposition technique are applied to the numerical solution of singularly perturbed parabolic problems. Two methods based on the Schwarz alternating procedure are considered: a two-level method with auxiliary “correcting” subproblems as well as a three-level method with auxiliary “predicting” and “correcting” subproblems. Moreover, modifications of the methods using time extrapolation on subdomain interfaces are investigated. The emphasis is given to the description of the algorithms as well as their computer realization on a distributed memory multiprocessor computer. Numerical experiments illustrate the performance of the algorithms on parallel environment and their behaviour with respect to the critical parameters, such as the perturbation parameter and the size of the auxiliary subdomains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.