Abstract

Cheap, rapid, simple and equipment-free nucleic acid extraction (NAE) is highly preferred for implementing nucleic acid detection at point-of-care (POC). Paper-based NAE materials have been extensively utilized due to their low cost, abundance, portability, biocompatibility and ease of chemical modification. However, it is challenging for users to choose the proper one from existing paper-based NAE materials for specific POC applications, which is determined by their physical and chemical properties. Additionally, building the relationship between the physical and chemical properties and the NAE efficiency of paper-based materials is instructive for development of new paper-based NAE materials. In this study, we first systematically compared the physical and chemical properties of six widely used paper-based NAE materials (namely Whatman filter paper #1, FTA card, FTA elute card, Fusion 5, silica membrane and polyethersulfone (PES) membrane), and then evaluated their NAE efficiency. The obtained results indicated that pore uniformity, wet strength, porosity and functional groups are key parameters to affect the efficiency of NAE. The NAE performance of FTA card is the best with high concentration and purity. Finally, we envision that more cost-effective paper-based NAE materials will be developed for POCT application in the future.Graphic abstract Supplementary InformationThe online version contains supplementary material available at 10.1007/s10570-022-04444-6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.