Abstract

ABSTRACT Advanced oxidation processes (AOPs) based on ozone are gaining continuously growing popularity in wastewater treatment. This study explored the treatment of coking wastewater using a combination of ozonation (O3), ultraviolet (UV), and hydrogen peroxide (H2O2) process expressed by % chemical oxygen demand (COD) removal, % total organic carbon (TOC), % UV254, % fluorescence intensity removal and its electrical energy consumption. The obtained results demonstrated that, the combination of O3, UV, and H2O2 which is denoted by O3/UV/H2O2 in this study achieved great success in COD removal (92.08%), TOC removal (78.25%), and reduction of fluorescence intensity (99.82%). Compared with the O3 and O3/UV processes, O3/UV/H2O2 improved the COD removal by approximately 54–69% and 38–51%, respectively. In addition, the energy consumption was reduced by 53–67%. The TOC removal rate in the effluent ranged 71% and 83%, while the UV254 removal rate was up to 90%. The fluorescence spectroscopy showed that the O3/UV/H2O2 combination process reduced the fluorescence intensity by almost 97% within 10 min. Furthermore, the total polycyclic aromatic hydrocarbons (PAHs) concentration in the effluent was less than 10μg/L (removal efficiency > 80%) and the most toxic benzo(a)pyrene (BaP) was less than 0.03 μg/L (0.018μg/L). In addition, the energy consumption of the O3/UV/H2O2 process was 53–67% lower than those of O3 and O3/UV processes. Furthermore, the energy consumption was 80.26 kWh m−3 after 60 min of reaction time when the COD (69.3 mg/L) met the standard discharge. Finally, the O3/UV/H2O2 process could be an effective method for improving the mineralisation of refractory organic matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call