Abstract
O2 uptake (VO2) kinetics and electromyographic (EMG) activity from the vastus medialis, rectus femoris, biceps femoris, and medial gastrocnemius muscles were studied during constant-load concentric and eccentric cycling. Six healthy men performed transitions from baseline to high-intensity eccentric (HE) exercise and to high-intensity (HC), moderate-intensity (MC), and low-intensity (LC) concentric exercise. For HE and HC exercise, absolute work rate was equivalent. For HE and LC exercise, VO2 was equivalent. VO2 data were fit by a two- or three-component exponential model. Surface EMG was recorded during the last 12 s of each minute of exercise to obtain integrated EMG and mean power frequency. Only in the HC exercise did VO2 increase progressively with evidence of a slow component (phase 3), and only in HC exercise was there evidence of a coincident increase with time in integrated EMG of the vastus medialis and rectus femoris muscles (P < 0.05) with no change in mean power frequency. The phase 2 time constant was slower in HC [24.0 +/- 1.7 (SE) s] than in HE (14.7 +/- 2.8 s) and LC (16.7 +/- 2.2 s) exercise, while it was not different from MC exercise (20.6 +/- 2.1 s). These results show that the rate of increase in VO2 at the onset of exercise was not different between HE and LC exercise, where the metabolic demand was similar, but both had significantly faster kinetics for VO2 than HC exercise. The VO2 slow component might be related to increased muscle activation, which is a function of metabolic demand and not absolute work rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.