Abstract

Investigations into the enzymes responsible for the reductive activation of antineoplastic agents are of particular interest with regard to the use of these agents in the treatment of solid tumors. Xanthine oxidase (EC 1.1.3.22; XO) and xanthine dehydrogenase (EC 1.1.1.204; XDH) are two enzymes capable of the reductive activation of antineoplastic agents. Previously, XDH, the enzymatic precursor of XO, was not extensively studied because of difficulties in its isolation. Research in the reductive activation of antineoplastic agents by XDH has increased with the discovery of a rapid and high-yield purification procedure for XDH. In the present investigation, the potential for drug activation of doxorubicin (DOX), streptonigrin (STN), and menadione (MD) by XO and XDH was assessed through oxygen consumption studies. These studies were conducted at pH 7.4 and pH 6.0 to reflect physiological and the acidic pH of solid tumors, respectively. Apparent kinetic constants were determined for DOX, STN, and MD activation by XO and XDH at both pH levels. Higher oxygen consumption was observed for XDH drug activation in comparison to XO drug activation at equivalent enzyme activity for both pH levels. Drug-induced oxygen consumption was affected by pH. Hence, drug activation for DOX, STN, and MD was dependent upon the form of the xanthine-converting enzyme and the pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.