Abstract

Abstract Thick titanium coatings were prepared by warm spraying (WS) and cold spraying (CS) process to investigate the oxidation and microstructure of the coating layers. Prior to the coating formations, the temperature and velocity of in-flight titanium powder particle were numerically calculated. Significant oxidation occurred in WS process using higher gas temperature conditions with low nitrogen flow rate, which is mixed to the flame jet of an HVOF spray gun in order to control the temperature of the propellant gas. Oxidation, however, decreased strikingly as the nitrogen flow rate increased. In CS process using nitrogen or helium as a propellant gas, little oxidation was observed. Although most of the cross-sections of the coating layers prepared by conventional mechanical polishing looked dense, coating cross sections prepared by an ion-milling method revealed the actual microstructures containing small pores and unbounded interfaces between deposited particles. Even when scanning electron microscopy or x-ray diffraction method did not detect oxides in the coating layers by WS using high nitrogen flow rate or CS using helium, the inert gas fusion method revealed minor increase of oxygen content below 0.3 wt%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call