Abstract

AbstractThe mass transfer performance of CO2 absorption into an innovative tertiary amine solvent, 1‐dimethylamino‐2‐propanol (1DMA2P), was investigated and compared with that of methyldiethanolamine (MDEA) in a packed column with random Dixon‐ring packing. All experiments were conducted under atmospheric pressure. The effects of inert gas flow rate, amine concentration, liquid flow rate, CO2 loading, and liquid temperature on mass transfer performance were analyzed and the results presented in terms of the volumetric overall mass transfer coefficient (KGav). The experimental findings clearly indicate that 1DMA2P provided better mass transfer performance than MDEA. For both 1DMA2P and MDEA solutions, the KGav increased with rising amine concentration and liquid flow rate, but decreased with higher CO2 loading. The inert gas flow rate only slightly affected the KGav. A satisfactory correlation of KGav was developed for the 1DMA2P‐CO2 system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.