Abstract

In the field of structural health monitoring or machine condition monitoring, the activation of nonlinear dynamic behavior complicates the procedure of damage or fault detection. Blind source separation (BSS) techniques are known as efficient methods for damage diagnosis. However, most of BSS techniques repose on the assumption of the linearity of the system and the need of many sensors. This article presents some possible extensions of those techniques that may improve the damage detection, e.g. Enhanced-Principal Component Analysis (EPCA), Kernel PCA (KPCA) and Blind Modal Identification (BMID). The advantages of EPCA rely on its rapidity of use and its reliability. The KPCA method, through the use of nonlinear kernel functions, allows to introduce nonlinear dependences between variables. BMID is adequate to identify and to detect damage for generally damped systems. In this paper, damage is firstly examined by Stochastic Subspace Identification (SSI); then the detection is achieved by comparing subspace features between the reference and a current state through statistics and the concept of subspace angle. Industrial data are used as illustration of the methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call