Abstract

This paper compares the thermoacoustic limit cycles of a premixed laboratory combustor with acoustically open and choked exits. It is shown that the form of the downstream boundary condition can have a significant effect on the combustion chamber acoustics, with both the dominant limit cycle frequencies and the acoustic mode shapes being very different for the different combustor exits. The fundamental limit cycle frequency with the choked exit in place agrees closely with that determined by the convective time scales of entropy disturbances, as argued by other authors. A novel experimental method is then developed to examine the acoustic response of an arbitrary duct termination to incident pressure and entropy perturbations, and used to measure the response of the combustor downstream boundary condition during thermoacoustic limit cycle. The reflection coefficient for the acoustically open exit matches closely the classical result for zero mean flow. It is also shown that a choked nozzle downstream of the flame generates significant sound due to the interaction of the convected entropy perturbation with the nozzle. This final result is qualitatively in keeping with an existing analytic boundary condition for a choked nozzle, even though quantitative agreement is not observed. Reasons for this discrepancy are then suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.