Abstract

This study was designed to compare the properties of myofibrillar protein (MP) stabilized soybean oil-in-water emulsions fabricated by ultrasound-assisted emulsification (UAE), high-pressure homogenization (HPH) and high-speed homogenization (HSH). The emulsion properties, droplet characteristics, interfacial proteins, protein exposure extent, microrheological properties, multiple light scattering results, and 7 d storage stabilities of the three emulsions were specifically investigated. Our results indicate that UAE and HPH were better emulsification methods than HSH to obtain high-quality emulsions with higher emulsifying activity index (UAE 20.73 m2·g−1, HPH 11.76 m2·g−1 and HSH 6.80 m2·g−1), whiteness (UAE 81.05, HPH 80.67 and HSH 74.09), viscosity coefficient (UAE 0.44 Pa·sn, HPH 0.49 Pa·sn and HSH 0.22 Pa·sn), macroscopic viscosity index (UAE 2.31 nm−2·s, HPH 0.38 nm−2·s and HSH 0.34 nm−2·s), and storage stability, especially for the UAE. Furthermore, UAE was a more efficient emulsification method than HPH to prepare the fine MP-soybean oil emulsion. The protein-coated oil droplets were observed in the three emulsions. The emulsion droplet size of the UAE-fabricated emulsion was the lowest (0.15 μm) while the interfacial protein concentration (93.37%) and the protein exposure extent were the highest among the three emulsions. During the 7 d storage, no separation was observed for the UAE-fabricated emulsion, while the emulsions fabricated by HPH and HSH were separated after storage for 5 d and 2 h. Therefore, this work suggests that UAE could be a better method than HPH and HSH to fabricate MP-soybean oil emulsion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call