Abstract

In recent years, research on methods for locating a source of spreading phenomena in complex networks has seen numerous advances. Such methods can be applied not only to searching for the “patient zero” in epidemics, but also finding the true sources of false or malicious messages circulating in the online social networks. Many methods for solving this problem have been established and tested in various circumstances. Yet, we still lack reviews that would include a direct comparison of efficiency of these methods. In this paper, we provide a thorough comparison of several observer-based methods for source localisation on complex networks. All methods use information about the exact time of spread arrival at a pre-selected group of vertices called observers. We investigate how the precision of the studied methods depends on the network topology, density of observers, infection rate, and observers’ placement strategy. The direct comparison between methods allows for an informed choice of the methods for applications or further research. We find that the Pearson correlation based method and the method based on the analysis of multiple paths are the most effective in networks with synthetic or real topologies. The former method dominates when the infection rate is low; otherwise, the latter method takes over.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.