Abstract

The New York Harbor Observation and Prediction System, now in its 3 rd generation (NYHOPS v3), combines a network of real time sensors and a hydrodynamic forecasting computer model to assess prevailing ocean, environmental and meteorological conditions and to provide long and short term forecasts of the mentioned conditions. The older NYHOPS v2 model used spatially uniform surface heat flux forcing. Barometric pressure gradient forcing has also been neglected. The scope of this work was to assess sensitivity of the NYHOPS Sea Surface Temperature (SST) predictions to the spatial variability of the surface boundary condition. We compared two runs using different meteorological forcing: 1) Spatially varying wind stress and air pressure forcing, but spatially uniform heat flux forcing for the entire NYHOPS region (NYHOPS v2 surface boundary conditions with air pressure). 2) Spatially varying wind stress, air pressure, and heat flux forcing (NYHOPS v3 surface boundary conditions with air pressure). The SST modeled with NYHOPS was then compared against the validated GOES 12 satellite SST mapped on the NYHOPS grid nodes. A remarkable improvement (error reduction to the extent of 60%) in the prediction of SST by NYHOPS v3 was observed compared to NYHOPS v2. Similar error ranges were observed on comparison of NYHOPS v3 modeled SST and the satellite SST against in-situ observations, indicating that NYHOPS provides an effective SST prediction tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call