Abstract

The paper discusses three different numerical models in a study of wave overtopping and impact on a sea wall. The models used are SWASH (based on the nonlinear shallow water equations), DualSPHysics and FLOW-3D (both based on the full Navier-Stokes equations). The models are validated against experimental measurements in a setup with a quay wall and berm in front of the sea wall. The two models based on the full Navier-Stokes equations provide good estimates of the wave impact on the sea wall. Moreover, reasonable agreement with experimental values of averaged overtopping discharges was found for the full test time series simulated with FLOW-3D. Notwithstanding the SWASH model provides reasonable estimates for the wave overtopping on a simple quay wall, at a significantly lower computational cost than the other two models, it clearly underrates the overtopping discharge in the case of a combination of a quay wall, berm and sea wall. Further investigation is needed to draw conclusions on the model accuracy of SWASH in such a case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.