Abstract

As the performance of Information Technology (IT) equipment continues to rise, so do the power dissipated and overall power density. Air cooling this increasing power has proved a significant challenge even at the data center level. In order to combat this challenge, Computational Fluid Dynamics and Heat Transfer (CFD/HT) models have been employed as the dominant technique for the design and optimization of both new and existing data centers. This study is a continuation of earlier comparisons of CFD/HT models to experimentally measured temperature and flow fields in a small data center test cell. It compares previously unpublished experimentally collected data for the 11 kW dissipation cases using three different layouts of perforated tiles to a CFD/HT model using eight turbulence models and a laminar flow model. Insight into the location of the deviation between the different turbulence models and experimental data are discussed, along with the computational effort involved in running the CFD/HT models. It was found that the laminar flow model and the Spalart-Allamaras turbulence model produced the smallest deviations from experimental data, but the former required only one twentieth of the computational effort of the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call