Abstract
Non-negative matrix factorization (NMF) is a useful method of data dimensionality reduction and has been widely used in many fields, such as pattern recognition and data mining. Compared with other traditional methods, it has unique advantages. And more and more improved NMF methods have been provided in recent years and all of these methods have merits and demerits when used in different applications. Clustering based on NMF methods is a common way to reflect the properties of methods. While there are no special comparisons of clustering experiments based on NMF methods on genomic data. In this paper, we analyze the characteristics of basic NMF and its classical variant methods. Moreover, we show the clustering results based on the coefficient matrix decomposed by NMF methods on the genomic datasets. We also compare the clustering accuracies and the cost of time of these methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.