Abstract

BackgroundRespirable crystalline silica (silicon dioxide; SiO2, quartz) particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous) SiO2 particles in the submicrometre range are regarded as less harmful. Several reports have demonstrated that crystalline, but also non-crystalline silica particles induce IL-1β release from macrophages via the NALP3-inflammasome complex (caspase-1, ASC and NALP3) in the presence of lipopolysaccharide (LPS) from bacteria. Our aim was to study the potential of different non-crystalline SiO2 particles from the nano- to submicro-sized range to activate IL-1β responses in LPS-primed RAW264.7 macrophages and primary rat lung macrophages. The role of the NALP3-inflammasome and up-stream mechanisms was further explored in RAW264.7 cells.ResultsIn the present study, we have shown that 6 h exposure to non-crystalline SiO2 particles in nano- (SiNPs, 5–20 nm, 50 nm) and submicro-sizes induced strong IL-1β responses in LPS-primed mouse macrophages (RAW264.7) and primary rat lung macrophages. The primary lung macrophages were more sensitive to Si-exposure than the RAW-macrophages, and responded more strongly. In the lung macrophages, crystalline silica (MinUsil 5) induced IL-1β release more potently than the non-crystalline Si50 and Si500, when adjusted to surface area. This difference was much less pronounced versus fumed SiNPs. The caspase-1 inhibitor zYVAD and RNA silencing of the NALP3 receptor reduced the particle-induced IL-1β release in the RAW264.7 macrophages. Furthermore, inhibitors of phagocytosis, endosomal acidification, and cathepsin B activity reduced the IL-1β responses to the different particles to a similar extent.ConclusionsIn conclusion, non-crystalline silica particles in the nano- and submicro-size ranges seemed to induce IL-1β release from LPS-primed RAW264.7 macrophages via similar mechanisms as crystalline silica, involving particle uptake, phagosomal leakage and activation of the NALP3 inflammasome. Notably, rat primary lung macrophages were more sensitive with respect to silica-induced IL-1β release. The differential response patterns obtained suggest that silica-induced IL-1β responses not only depend on the particle surface area, but on factors and/or mechanisms such as particle reactivity or particle uptake. These findings may suggest that bacterial infection via LPS may augment acute inflammatory effects of non-crystalline as well as crystalline silica particles.

Highlights

  • IntroductionRespirable crystalline silica (silicon dioxide; SiO2, quartz) particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous) SiO2 particles in the submicrometre range are regarded as less harmful

  • Respirable crystalline silica particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline SiO2 particles in the submicrometre range are regarded as less harmful

  • In the present in vitro study we have investigated the potential of different non-crystalline silica particles to induce IL-1β release from LPS-primed RAW264.7 macrophage as well as primary rat lung macrophages

Read more

Summary

Introduction

Respirable crystalline silica (silicon dioxide; SiO2, quartz) particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous) SiO2 particles in the submicrometre range are regarded as less harmful. The general population is exposed to crystalline silica (silicon dioxide; SiO2) particles, abundant in nature as quartz and other minerals. Chronic exposure to respirable quartz particles is associated with ongoing cell injury, fibrosis (silicosis) and lung cancer [1,2,3]. Non-crystalline silica (amorphous) particles are generally regarded to be safer, with no or less chronic effects [4,5,6]. Noncrystalline silica particles are increasingly used for various applications including construction work, medical diagnosis, cancer therapy and drug delivery, and are added to cosmetics and food. The increasing use of various forms of non-crystalline silica particles, and in particular the nano-sized, requires more thorough examination of their possible health effects

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call