Abstract

Transient liquid phase diffusion brazing is used in precision, hermetic joining applications as a replacement for diffusion bonding to reduce cycle times, reduce bonding pressure, and improve yields. In the present study, stainless steel 316L laminae are diffusion brazed with an interlayer of nickel nanoparticles and compared with samples joined by conventional diffusion bonding and electroplated nickel-phosphorous diffusion brazing. Comparison is made with regard to microstructural evolution, diffusional profile, and bond strength. All bonding was carried out in a uni-axial vacuum hot press at 1000°C with a heating rate of 10°C/min, a dwell time of 2 h and a bonding pressure of 10 MPa. Bond strength measurements show that the sample brazed with a nickel nanoparticle interlayer has the lowest void fraction at 4.8±0.9% and highest shear strength at 141.3±7.0 MPa. Wavelength dispersive spectroscopic analysis of sample cross-sections shows substantial diffusion of Ni and Fe across the nickel nanoparticle bond line. Scanning electron micrographs show no secondary phases along the nickel nanoparticle bond line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call