Abstract

Abstract This study compares next-day forecasts of storm motion from convection-allowing models with 1- and 4-km grid spacing. A tracking algorithm is used to determine the motion of discrete storms in both the model forecasts and an analysis of radar observations. The distributions of both the raw storm motions and the deviations of these motions from the environmental flow are examined to determine the overall biases of the 1- and 4-km forecasts and how they compare to the observed storm motions. The mean storm speeds for the 1-km forecasts are significantly closer to the observed mean than those for the 4-km forecasts when viewed relative to the environmental flow/shear, but mostly for the shorter-lived storms. For storm directions, the 1-km forecast storms move similarly to the 4-km forecast storms on average. However, for the raw storm motions and those relative to the 0–6-km shear, results suggest that the 1-km forecasts may alleviate some of a clockwise (rightward) bias of the 4-km forecasts, particularly for those that do not deviate strongly from the 0–6-km shear vector. This improvement in a clockwise bias also is seen for the longer-lived storms, but is not seen when viewing the storm motions relative to the 850–300-hPa mean wind or Bunkers motion vector. These results suggest that a reduction from 4- to 1-km grid spacing can potentially improve forecasts of storm motion, but further analysis of closer storm analogs are needed to confirm these results and to explore specific hypotheses for their differences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call