Abstract

Cortical stimulation (CS) is an appealing and emerging treatment for neurological disorders. CS is known to promote functional recovery effectively; however, its underlying mechanism and the optimal parameters for the effective treatment are not clearly understood. In this work, we developed a realistic three-dimensional full head and chest model for subdural CS. Our proposed model was compared at the neuron level with an existing simplified extruded slab partial head model depicting around precentral gyral cortex only. Each model was coupled with the pyramidal neuronal model in order to investigate an extent of neuronal excitation. We found that the crown of the cortex was the most excitable area in the unipolar stimulation, while in the bipolar stimulation, the lip and bank were excited more easily than other areas. Finally, it was evident that our proposed model was substantially different in excitation threshold from the existing simplified model, which is compelling to do computational CS study on more realistic head models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.