Abstract
This paper investigates the use of conditional demand analysis (CDA) method to model the residential end-use energy consumption at the national level. There are several studies where CDA was used to model energy consumption at the regional level; however the CDA method had not been used to model residential energy consumption at the national level. The prediction performance and the ability to characterize the residential end-use energy consumption of the CDA model are compared with those of a neural network (NN) and an engineering based model developed earlier. The comparison of the predictions of the models indicates that CDA is capable of accurately predicting the energy consumption in the residential sector as well as the other two models. The effects of socio-economic factors are estimated using the NN and the CDA models, where possible. Due to the limited number of variables the CDA model can accommodate, its capability to evaluate these effects is found to be lower than the NN model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.