Abstract

The goal of this study was to compare the efficacy of coated iron-core nanoparticles and single-layer centrifugation for separation of dead from live stallion spermatozoa. Our hypothesis was that nanoparticles would bind to dead sperm and allow for separation from live sperm using a magnet, resulting in a population of spermatozoa with a high percentage of total and progressive motility. Treatment Group 1 was an untreated control. Treatment Group 2 (nanoparticles, NP) utilized sperm incubated with nanoparticles followed by application of a magnet to remove dead sperm adhered to the coated nanoparticles. Treatment Group 3 (single-layer centrifugation, SLC) layered sperm above EquiPure™ followed by centrifugation. Semen samples were subsequently evaluated for sperm motility parameters, plasma membrane integrity, acrosome status, and morphology. The SLC technique yielded higher (p < 0.05) progressive motility (76 ± 9.2%) than the NP separation technique (59 ± 12.2%) or the untreated control (47.3 ± 5.1%). However, the total number of sperm recovered was higher (p < 0.05) in the NP technique (526.2 ± 96.6 × 106) than the SLC procedure (211.7 ± 70 × 106), yielding a higher total number of progressively motile sperm (317.6 ± 109 × 106) recovered using the NP technique than the SLC technique (157.8 ± 43.6 × 106). The percentage of live, acrosome intact sperm recovered was higher for SLC than NP. In summary, the SLC technique yielded a higher percentage of sperm motility, intact plasma membranes, and acrosome integrity, but yielded lower total sperm than with the nanoparticle separation technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call