Abstract

ABSTRACT Nanofiltration (NF) membranes have been largely developed and commercialised over the past decade and are currently one of the most promising technologies for the separation of neutral and charged solutes in aqueous solutions. Sometimes NF is defined as a process between ultrafiltration and reverse osmosis; however, the separation mechanisms of this kind of membranes are not clear enough, and even today there are some questions remaining about how NF membranes work. Nowadays, there are many different types of NF membranes commercially available, so the first step before developing a new NF treatment plant is to know which one is going to be the most suitable membrane. There are two main configurations in which NF can be used: flat sheet and spiral wound module. The cross-flow module using flat sheet membranes is the simplest option to test an NF membrane but at the industrial scale, NF is basically used in the spiral wound configuration. Currently, there are no studies available regarding the difference of using both configurations. The objective of this work is to do an experimental study regarding the performance of two different NF membranes, NF270 (Dow Chemical) and ESNA 1-LF2 (Hydranautics), in two different scales, laboratory and pilot plant, using the most typical configurations in each case: flat sheet and spiral wound respectively. Using the same feed water, the operating conditions and the rejections of the membranes in both configurations will be studied in order to check if both operating scales can be comparable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.