Abstract
It is expected that the safety characteristics of sodium-ion batteries are higher than that of lithium-ion batteries, but the response of sodium-ion batteries with different material systems under thermal runaway is still lacking in-depth analysis. In this study, the thermal runaway characteristics of NaNi1/3Fe1/3Mn1/3O2 and Na4Fe3(PO4)2(P2O7) cathode pouch sodium-ion batteries are compared. First, thermal runaway experiments analyze the electro-thermal–mechanical-gas response of the two kinds of sodium-ion batteries. Based on this, the sodium plating and gas generation process under overcharge conditions are analyzed using coin batteries and in-situ cells coupled with optical microscopy. By combining the macro and micro characteristics at different stages of thermal runaway, this study elucidates the thermal runaway characteristics and corresponding causes of the two kinds of cathode material sodium-ion batteries. The results provide a foundation for subsequent research on the materials of sodium-ion batteries and methods for monitoring thermal runaway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.