Abstract
Non-Cash Food Assistance or Bantuan Pangan Non-Tunai (BPNT) is food assistance from the government given to the Beneficiary Family (KPM) every month through an electronic account mechanism that is used only to buy food at the Electronic Shop Mutual Assistance Joint Business Group Hope Family Program (e-Warong KUBE PKH ) or food traders working with Bank Himbara. In its distribution, BPNT still has problems that occur that are experienced by the village apparatus especially the apparatus of Desa Wanasari on making decisions, which ones are worthy of receiving (poor) and not worthy of receiving (not poor). So one way that helps in making decisions can be done through the concept of data mining. In this study, a comparison of 2 algorithms will be carried out namely Naive Bayes Classifier and Decision Tree C.45. The total sample used is as much as 200 head of household data which will then be divided into 2 parts into validation techniques is 90% training data and 10% test data of the total sample used then the proposed model is made in the RapidMiner application and then evaluated using the Confusion Matrix table to find out the highest level of accuracy from 2 of these methods. The results in this classification indicate that the level of accuracy in the Naive Bayes Classifier method is 98.89% and the accuracy level in the Decision Tree C.45 method is 95.00%. Then the conclusion that in this study the algorithm with the highest level of accuracy is the Naive Bayes Classifier algorithm method with a difference in the accuracy rate of 3.89%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.