Abstract

Partial least-squares (PLS) calibration models have been generated from a series of near-infrared (near-IR) and Raman spectra acquired separately from sixty different mixed solutions of glucose, lactate, and urea in aqueous phosphate buffer. Independent PLS models were prepared and compared for glucose, lactate, and urea. Near-IR and Raman spectral features differed substantially for these solutes, with Raman spectra enabling greater distinction with less spectral overlap than features in the near-IR spectra. Despite this, PLS models derived from near-IR spectra outperformed those from Raman spectra. Standard errors of prediction were 0.24, 0.11, and 0.14 mmol L(-1) for glucose, lactate, and urea, respectively, from near-IR spectra and 0.40, 0.42, and 0.36 mmol L(-1) for glucose, lactate, and urea, respectively, from Raman spectra. Differences between instrumental signal-to-noise ratios were responsible for the better performance of the near-IR models. The chemical basis of model selectivity was examined for each model by using a pure component selectivity analysis combined with analysis of the net analyte signal for each solute. This selectivity analysis showed that models based on either near-IR or Raman spectra had excellent selectivity for the targeted analyte. The net analyte signal analysis also revealed that analytical sensitivity was higher for the models generated from near-IR spectra. This is consistent with the lower standard errors of prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.