Abstract

General circulation models (GCMs) are important tools for the study of climate change, but their resolutions are too coarse for station-scale impact assessments. Statistical and dynamical downscaling methods are widely used to translate the predictions of GCMs to the finer spatial scale and it is important to understand the difference between statistical and dynamical downscaling methods in different climatic zones and time periods. Moreover, statistical downscaling can be used on both GCM and regional climate model (RCM) outputs. In this study, two sets of GCM precipitations were dynamically and statistically downscaled and their performances were evaluated against the observed precipitation from 308 stations distributed throughout the Yellow, Yangtze, and Pearl River basins. These stations have distinct climatic characteristics from the historical period (1961–2000) and future period (2031–2050). Results suggest dynamically downscaled GCM precipitation does not present lower biases when comparing observed site-specific precipitation to GCM outputs, and biases of the initial dynamically downscaled GCM outputs decreased in areas with higher humidity. This demonstrates that statistical downscaling can improve GCM and RCM outputs, and the statistical downscaling method can reproduce local-scale precipitation satisfactorily without dynamical downscaling. However, statistical downscaling reduced spatial regularity of the biases that exist in GCM and RCM outputs between the observations and simulation. Additionally, the spatial discrepancy between statistically downscaled GCM and RCM precipitations was very small. In the future period, discrepancies between statistically downscaled RCM and GCM precipitations in the two climate scenarios were larger than the historical period for all climate zones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call