Abstract

Ultrasonic inline inspection (ILI) tools have been used in the oil and gas pipeline industry for the last 14 years to detect and measure cracks. The detection capabilities of these tools have been verified through many field investigations. ILI ultrasonic crack detection has good correlation with the crack layout on the pipe and estimating the maximum crack depth for the crack or colony. Recent analytical developments have improved the ability to locate individual cracks within a colony and to define the crack depth profile. As with the management of corroding pipelines, the ability to accurately discriminate active from non-active cracks and to determine the rate of crack growth is an essential input into a number of key integrity management decisions. For example, in order to identify the need for and timing of field investigations and/or repairs and to optimize re-inspection intervals crack growth rates are a key input. With increasing numbers of cracks and crack colonies being found in pipelines there is a real need for reliable crack growth information to use in prioritizing remediation activities and planning re-inspection intervals. So as more and more pipelines containing cracks are now being inspected for a second time (or even third time in some cases), the industry is starting to look for quantitative crack growth information from the comparison of repeat ultrasonic crack detection ILI runs. This paper describes the processes used to analyze repeat ultrasonic crack detection ILI data and crack growth information that can be obtained. Discussions on how technical improvements made to crack sizing accuracy and how field verification information can benefit integrity plans are also included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call