Abstract

Bistatic radars, specifically forward-scatter radars, are proposed as an alternative to standard monostatic radars against targets whose radar cross sections (RCS) have been reduced by passive means. Forward-scatter radars operate by detecting echoes from a targets forward-scatter RCS, which is insensitive to effects of passive RCS reduction techniques. However, the performance of the forward-scatter radar is compromised when the angular separation between the interference, which propagates directly from the transmitter to the receiver, and the target return is less than the Rayleigh resolution limit of the receiving antenna. This research presents the results of a parametric study of the ability of a forward-scatter radar to detect and measure the bearing of a large target, whose RCS is reduced via passive means. Super-resolution array processing techniques, particularly root-MUSIC (multiple signal classification), are used to overcome the traditional limitations resulting from the Rayleigh resolution limit of the antenna. The study compares the received power and the bearing measurement accuracy of the forward-scatter radar to that of an equivalent monostatic radar system. The results indicate that forward-scatter radars enjoy advantages in detection and bearing measurement when the backscatter RCS of the target has been reduced and when the target is close to the baseline. The results also indicate that, through the use of super-resolution array processing the capability of the forward-scatter radar to accurately measure the bearing of the target is dependent upon the amount of interference from the direct wave (i.e., the wave which propagates from the transmitter directly to the receiver) and the correlation between the direct wave and the target echo. Good bearing estimates can be achieved if the correlation coefficient is less than 0.95. Bearing measurements may be improved by suppressing the direct wave by either sidelobe control or null steering techniques. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.