Abstract
Due to the growing number of devices accessing the Internet through wireless networks, the radio spectrum has become a highly contended resource. The availability of low cost radio spectrum monitoring sensors enables a geographically distributed, real-time observation of the spectrum to spot inefficiencies and to develop new strategies for its utilization. The potentially large number of sensors to be deployed and the intrinsic nature of data make this task a Big Data problem. In this work we design, implement, and validate a hardware and software architecture for wideband radio spectrum monitoring inspired to the Lambda architecture. This system offers Spectrum Sensing as a Service to let end users easily access and process radio spectrum data. To minimize the latency of services offered by the platform, we fine tune the data processing chain. From the analysis of sensor data characteristics, we design the data models for MongoDB and Cassandra, two popular NoSQL databases. A MapReduce job for spectrum visualization has been developed to show the potential of our approach and to identify the challenges in processing spectrum sensor data. We experimentally evaluate and compare the performance of the two databases in terms of application processing time for different types of queries applied on data streams with heterogeneous generation rate. Our experiments show that Cassandra outperforms MongoDB in most cases, with some exceptions depending on data stream rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Network and Service Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.