Abstract

This study compares five different models of the relative static permittivity when they are used in the electrolyte Cubic Plus Association (e-CPA) equation of state. To get the best possible performance of the models, the parameters of e-CPA are readjusted for every model. Two different combinations of adjustable parameters are tested. The static permittivity models that are compared include both simple correlations and theoretically derived expressions. A new theoretically based model, that has not been applied to e-CPA before, is also investigated. The novel model describes the impact ions have on the relative static permittivity based on water–ion association. The model is parameterized in two ways: firstly, so that the model describes the reported experimental relative static permittivity data, and secondly to describe the permittivity when kinetic depolarization is not included. All the models are tested for their quantitative agreement with mean ionic activity coefficients (MIAC), osmotic coefficients and density. The model that describes the experimental data the best is the one based on ion association, when it is parameterized to describe the experimental relative static permittivity data. The prediction of the individual ion activity coefficients (IIAC) is also investigated. The only model that is capable of describing the qualitative trend of the IIAC data is the ion association model, but the quantitative agreement with the IIAC data is quite poor. Because of this, an additional parameterization of the ion association model is performed based on an altered parameter optimization strategy. It is shown that with the new parameterization it is possible to describe the IIAC data well, without significant loss of performance for any of the other properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.