Abstract

Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long‐lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta‐analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta‐analysis‐based model and a satellite‐based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process‐based ecosystem models (Biome‐BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome‐BGC and VISIT was 25% and 29% higher than the meta‐analysis‐based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model‐specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome‐BGC and VISIT compared to the meta‐analysis‐based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand‐level controls on carbon partitioning are not yet accurately represented in ecosystem models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.