Abstract

This pilot-scale heat exchanger demonstration compares two relatively simple nonlinear model-based control strategies to conventional proportional-integral (PI) control. The two nonlinear controllers, generic model control (GMC) and process-model based control (PMBC), use a first-principles model thereby providing characterization of the nonlinear process throughout the operating range. There are two approaches to GMC, one uses a dynamic model, the other a steady-state model. This work uses the steady-state model; accordingly, will use the term GMC-SS, which can be classified as output characterization for a PI controller, making it relatively simple to implement. PMBC uses a dynamic model and adapts to represent the process. These two nonlinear controllers were selected for this application evaluation because of their simplicity (they can be implemented in-house within many commercial control systems), diversity (steady-state and dynamic models), and demonstrated utility for control of nonlinear single-input–single-output processes. The application and results are presented and discussed.Summarizing the results: Within a small temperature operating range PI provides good control, but over the full operating range, the nonlinear and variable delay of the process lead to poor control with PI. GMC can handle the nonlinear issues, but using the convenient steady-state model; it also, provides poor control because of the variable delay associated with flow rate. PMBC was able to provide good control throughout the entire operating range. PMBC has a further advantage of only having one tuning coefficient, while PI and GMC-SS have two.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call