Abstract

A desirable property in fault-tolerant controllers is adaptability to system changes as they evolve during systems operations. An adaptive controller does not require optimal control policies to be enumerated for possible faults. Instead it can approximate one in real-time. We present two adaptive fault-tolerant control schemes for a discrete time system based on hierarchical reinforcement learning. We compare their performance against a model predictive controller in presence of sensor noise and persistent faults. The controllers are tested on a fuel tank model of a C-130 plane. Our experiments demonstrate that reinforcement learning-based controllers perform more robustly than model predictive controllers under faults, partially observable system models, and varying sensor noise levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.