Abstract
Abstract Despite recent advances in numerical weather prediction, major errors in short-range forecasts still occur. To gain insight into the origin and nature of model forecast errors, error frequencies and magnitudes need to be documented for different models and different regions. This study examines errors in sea level pressure for four operational forecast models at observation sites along the east and west coasts of the United States for three 5-month cold seasons. Considering several metrics of forecast accuracy, the European Centre for Medium-Range Weather Forecasts (ECMWF) model outperformed the other models, while the North American Mesoscale (NAM) model was least skillful. Sea level pressure errors on the West Coast are greater than those on the East Coast. The operational switch from the Eta to the Weather Research and Forecasting Nonhydrostatic Mesoscale Model (WRF-NMM) at the National Centers for Environmental Prediction (NCEP) did not improve forecasts of sea level pressure. The results also suggest that the accuracy of the Canadian Meteorological Centre’s Global Environmental Mesoscale model (CMC-GEM) improved between the first and second cold seasons, that the ECMWF experienced improvement on both coasts during the 3-yr period, and that the NCEP Global Forecast System (GFS) improved during the third cold season on the West Coast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.