Abstract

Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively), the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL), was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red) muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis) with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and the lake sturgeon (Acipenser fulvescens)] and the rat. At a common assay temperature (25°C) rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C) but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.

Highlights

  • Fishes of the family Scombridae are highly active marine predators

  • The elevated red muscle temperature in endothermic fishes should increase the potential for H2O2 formation but we see no evidence for compensatory decrease in H2O2 production in the Pacific Bluefin tuna, whereas we do see this in a representative endothermic mammal

  • Slow-twitch red muscle has a primary function in locomotion in these fish. This suggests that there is a trade-off in red, slow-twitch muscle between thermal effects that are selected for to improve muscle performance at elevated temperature (Altringham and Block, 1997), and the propensity toward mitochondrial H2O2 formation in the evolution of endothermy in fishes

Read more

Summary

Introduction

Fishes of the family Scombridae (the mackerels, bonitos, and tunas) are highly active marine predators. Within this clade, endothermy has evolved and is most expressed in the three species of bluefin tunas that occupy cooler temperate waters and, as adults, subpolar seas (Block et al, 2005; Boustany et al, 2007; Whitlock et al, 2015). If higher physiological temperatures could lead to elevated potential for ROS production compensatory mechanisms to minimize mitochondrial H2O2 production may co-evolve with endothermy

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call