Abstract
Abstract Segmentation is a typical task in image processing having as main goal the partitioning of the image into multiple segments in order to simplify its interpretation and analysis. One of the more popular segmentation model, formulated by Chan-Vese, is the piecewise constant Mumford-Shah model restricted to the case of two-phase segmentation. We consider a convex relaxation formulation of the segmentation model, that can be regarded as a nonsmooth optimization problem, because the presence of the l1-term. Two basic approaches in optimization can be distinguished to deal with its non differentiability: the smoothing methods and the nonsmoothing methods. In this work, a numerical comparison of some first order methods belongs of both approaches are presented. The relationships among the different methods are shown, and accuracy and efficiency tests are also performed on several images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Applied and Industrial Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.