Abstract

The development of mid-infrared interband diode lasers has been hindered by factors such as Auger recombination and intervalence band absorption, which become increasingly important at longer wavelengths. A number of structures have been proposed in which the effects of these processes are reduced. The maximum gain per unit volumetric current density can be used as a figure of merit for comparing different active region materials. Using this figure of merit, we compare a series of structures with band gaps near 0.3 eV (i.e., wavelengths near 4 microns). The figure of merit is obtained from gain spectra calculated using superlattice K(DOT)p theory and a combination of calculated and measured recombination rates. We show that devices based on active regions incorporating type-I InAsSb/AlInAsSb or InAsSb/InAsP quantum wells should have room temperature threshold currents 7 - 13 times smaller than those of devices based on bulk InAs. However, devices using type-II superlattice active regions should have room temperature threshold currents that are a factor of 3 - 4 times smaller than those of the type-I quantum wells. The figure of merit can also be used to determine the optimal thickness of the active region as a function of waveguide loss and optical mode width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.