Abstract

Knowledge regarding particle deposition processes in the nasal cavity is important in aerosol therapy and inhalation toxicology applications. This paper presents a comparative study of the deposition of micron and submicron particles under different steady laminar flow rates using a Lagrangian approach. A computational model of a nasal cavity geometry was developed from CT scans and the simulation of the fluid and particle flow within the airway was performed using the commercial software GAMBIT and FLUENT. The air flow patterns in the nasal cavities and the detailed local deposition patterns of micron and submicron particles were presented and discussed. It was found that the majority of micron particles are deposited near the nasal valve region and some micron particles are deposited on the septum wall in the turbinate region. The deposition patterns of micron particles in the left cavity are different compared with that in the right one especially in the turbinate regions. In contrast, the deposition for nanoparticles shows a moderately even distribution of particles throughout the airway. Furthermore the particles releasing position obviously influences the local deposition patterns. The influence of the particle releasing position is mainly shown near the nasal valve region for micron particle deposition, while for submicron particles deposition, both the nasal valve and turbinate region are influenced. The results of the paper are valuable in aerosol therapy and inhalation toxicology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.