Abstract

Microscale-based separations are increasingly being applied in the field of metabolomics for the analysis of small-molecule metabolites. These methods have the potential to provide improved sensitivity, less solvent waste, and reduced sample-size requirements. Ion-pair free microflow-based global metabolomics methods, which we recently reported, were further compared to analytical flow ion-pairing reagent containing methods using a sample set from a urea cycle disorder (UCD) mouse model. Mouse urine and brain homogenate samples representing healthy, diseased, and disease-treated animals were analyzed by both methods. Data processing was performed using univariate and multivariate techniques followed by analyte trend analysis. The microflow methods performed comparably to the analytical flow ion-pairing methods with the ability to separate the three sample groups when analyzed by partial least-squares analysis. The number of detected metabolic features present after each data processing step was similar between the microflow-based methods and the ion-pairing methods in the negative ionization mode. The observed analyte trend and coverage of known UCD biomarkers were the same for both evaluated approaches. The 12.5-fold reduction in sample injection volume required for the microflow-based separations highlights the potential of this method to support studies with sample-size limitations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call