Abstract

Microbial communities associated with a variety of hydrothermal emissions at the Yonaguni Knoll IV hydrothermal field, the southernmost Okinawa Trough, were analyzed by culture-dependent and -independent techniques. In this hydrothermal field, dozens of vent sites hosting physically and chemically distinct hydrothermal fluids were observed. Variability in the gas content and formation in the hydrothermal fluids was observed and could be controlled by the potential subseafloor phase-separation and -partition processes. The hydrogen concentration in the hydrothermal fluids was also variable (0.8-3.6 mmol kg(-1)) among the chimney sites, but was unusually high as compared with those in other Okinawa Trough hydrothermal fields. Despite the physical and chemical variabilities of the hydrothermal fluids, the microbial communities were relatively similar among the habitats. Based on both culture-dependent and -independent analyses of the microbial community structures, members of Thermococcales, Methanococcales and Desulfurococcales likely represent the predominant archaeal components, while members of Nautiliaceae and Thioreductoraceae are considered to dominate the bacterial population. Most of the abundant microbial components appear to be chemolithotrophs sustained by hydrogen oxidation. The relatively consistent microbial communities found in this study could have been because of the sufficient input of hydrogen from the hydrothermal fluids rather than other chemical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call