Abstract

This paper explores the potential of micro-pin-fin heat sinks as an effective alternative to microchannel heat sinks for dissipating high heat fluxes from small areas. The overall goal is to compare microchannel and micro-pin-fin heat sinks based on three metrics: thermal performance, hydraulic performance, and cost of manufacturing. The channels and pins of the microchannel and micro-pin-fin heat sinks, respectively, have a width of 200 ?m and a height of 670 ?m. A comparison of the thermal-hydraulic performance shows that the micro-pin-fin heat sink has a lower convection thermal resistance at liquid flow rates above approximately 60 g/min, though this is accompanied by a higher pressure drop. Methods that could feasibly fabricate the two heat sinks are reviewed, with references outlining current capabilities and limitations. A case study on micro-end-milling of the heat sinks is included. This paper includes equations that separate the fabrication cost into the independent variables that contribute to material cost, machining cost, and machining time. It is concluded that, with micro-end-milling, the machining time is the primary factor in determining cost, and, due to the additional machining time required, the micro-pin-fin heat sinks are roughly three times as expensive to make. It is also noted that improvements in the fabrication process, including spindle speed and tool coatings, will decrease the difference in cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call